Titrimetric analysis. Acid-base titration

A method based on determination of the volume of reagent reacting stoichiometrically with the analyte

First appeared in XVIII century and did not receive wide acceptance

$A + B \rightarrow C$

A – determined compound;

B-added reactant, totally consumed during reaction;

Bis added till the moment when it stops reacting with A.

Method principle

Measures volume of a titrant at the equivalence point

Titrant is added until all analyte is reacted

Back-titration

A + B(excess) \rightarrow C + B(unreacted)

After reaction ends, concentration of unreacted "B" is determined by titrimetry (or any other method)

Equivalence point

The most important part of titration - to determine equivalence point

Moles of titrant = $V_{eq} \times C_T$

where V_{eq} -volume of titrant at equivalence point, L(or mL); C_T -concentration of the titrant, mol/L (or mol/mL)

Equivalence point is determined using:

- indicators (change color at the equivalence point);
- pH measurement;
- electrochemical potential measurement.

Calculation of analyte concentration

$$xA + yB \rightarrow zC$$

$$C_A \times V_A = \frac{C_B \times V_B \times X}{Y}$$

where:

C_A-concentration of analyte in sample (unknown, determined);
V_A-volume of sample (taken by analyst, known);
C_B-concentration of titrant (prepared by analyst, known);
V_B-volume of titrant at the equivalence point (determined);
X and Y-stoichiometric coefficients

Analytical signal

 $S = k \cdot C$

Volume of titrant (V_t) is the analytical signal

$$\boldsymbol{V_t} = \frac{\boldsymbol{C_A} \times \boldsymbol{V_A} \times \boldsymbol{Y}}{\boldsymbol{C_t} \times \boldsymbol{X}}$$

$$k = \frac{V_A \times Y}{Q \times X}$$

Exercise
10 mL of NaOH solution in water with unknown concentration was
titrated with aqueous solution of HCI (C = 0.200 mol/L). Equivalence
point was established at the volume of titrant 7.80 mL. What is the
concentration of NaOH in the analyzed sample?
NaOH + HCI
$$\rightarrow$$
 Na⁺ + OH⁺ + H₂O
 $C_{NaOH} = \frac{C_t \times V_t \times X}{V_{NaOH} \times Y} = \frac{0.200 \frac{mol}{L} \times 7.8 mL}{10 mL} = 0.156 mol/L$
Answer: concentration of NaOH in the analyzed solution is 0.156 mol/L

Quick task

15 mL of H_2SO_4 solution in water with unknown concentration was titrated with aqueous solution of NaOH (C = 0.200 mol/L). Equivalence point was established at the volume of titrant 12.20 mL. What is the concentration of H_2SO_4 in the analyzed sample?

Titrant volume measurement: burette

2

Table 9.	I Specific Burets	Specifications for Volumetric Burets			
Volume (mL)	Class ^a	Subdivision (mL)	Tolerance (mL)		
5	А	0.01	±0.01		
	B	0.01	±0.02		
10	A	0.02	±0.02		
	В	0.02	±0.04		
25	A	0.1	±0.03		
	В	0.1	±0.06		
50	A	0.1	±0.05		
	В	0.1	±0.10		
100	A	0.2	±0.10		
	В	0.2	±0.20		

^aSpecifications for class A and class B glassware are taken from American Society for Testing Materials (ASTM) E288, E542, and E694 standards.

Titration curve

Reactions in titrimetry

Acid-base

Redox

Complexation

Precipitation

Acids-Base Titrimetry

$H^+ + OH^- \rightarrow H_2O$

Acid istitrated by base or Base istitrated by acid

During acid-base titration, pHslowly changes; At equivalence point pH rapidly changes.

Acid-base titration curve

pH during titration of strong acid

$H^+ + OH^- \leftrightarrow H_2O$

Before equivalence point: pH = - log [H⁺] = - log [unreacted HCl]

After equivalence point: pH = 14+log [OH⁻] = 14 + log [excess NaOH]

At equivalence point: [H+] x [OH-] = 10⁻¹⁴; [H+] = [OH-] = 10⁻⁷ pH = 7

Table 9.2	Data for Titration of 50.00 mL of		
	0.100 M HCl with 0.0500 M NaOH		

рН	Volume (mL) of Titrant
1.00	0.00
1.14	5.00
1.30	10.00
1.51	15.00
1.85	20.00
2.08	22.00
2.57	24.00
7.00	25.00
11.42	26.00
11.89	28.00
12.50	30.00
12.37	35.00
12.52	40.00
12.62	45.00
12.70	50.00

pH during titration of weakacid by strong base

Before titration

 $HAc \leftrightarrow H^+ + Ac^-$

$$K_{A} = \frac{[H^{+}] \times [Ac^{-}]}{[HAc]} = \frac{[H^{+}] \times [H^{+}]}{C_{0} - [H^{+}]} = 1.75 \times 10^{-5}$$

For most weak aids $[H^+] = \sqrt{K_a C_0}$

if $C_0 = 0.1M$, $[H^+] = 1.32 \times 10^{-3}$; pH = - log $[H^+] = 2.88$

Before an equivalence point $HAC + OH^2 \rightarrow AC^2 + H_2O$ immediately immediately reacted formed $K_{\alpha} = \frac{[H^+][Ac^-]}{[HAc]} \longrightarrow [H^+] = \frac{K_{\alpha}HAc}{[Ac^-]}$ $pH = pK_a + \log \frac{[Ac^-]}{[HAc]}$ $[HAc] = \frac{moles \ of \ unreacted \ HAc}{total \ volume} = \frac{C_A \times V_A - C_B \times V_b}{V_A + V_B}$ $[Ac^{-}] = \frac{moles \ of \ NaOH \ added}{total \ volume} = \frac{C_B \times V_b}{V_A + V_B}$ $pH = pK_a + \log \frac{moles \ of \ NaOH \ added}{moles \ of \ unreacted \ HAc}$

At and after equivalence point $Ac^{-} + H_2O \leftrightarrow HAc + OH^{-}$ $K_{b} = \frac{[HAc] \times [OH^{-}]}{[Ac^{-}]} = \frac{[OH^{-}] \times [OH^{-}]}{\frac{C_{0} \times V_{A}}{V_{0} + V_{0}} - [OH^{-}]}$ $K_{b} = \frac{[HAc] \times [OH^{-}]}{[Ac^{-}]} = \frac{[HAc][OH^{-}][H^{+}]}{[Ac^{-}][H^{+}]} = \frac{K_{w}}{K_{a}} = \frac{10^{-14}}{1.75 \times 10^{-5}} = 5.71 \times 10^{-10}$ For most weak bases: $[OH^{-}] = \sqrt{K_b C_0}$

After an equivalence point, pH will correspond to the concentration of excess NaOH.

$$[OH^{-}] = \frac{C_A \times V_A - C_B \times V_B}{V_A + V_B}$$

Table 9.3	Data for Titration of 50.0 mL of 0.100 M Acetic Acid with 0.100 M NaOH			
Volum	e of NaOH			
	(mL)	pН		1
1	0.00	2.88		
	5.00	3.81		1
	10.00	4.16		
	15.00	4.39		1
	20.00	4.58		
	25.00	4.76		
	30.00	4.94		-
	35.00	5.13		卢
	40.00	5.36		6
	45.00	5.71		
	48.00	6.14		4
	50.00	8.73		
	52.00	11.29		
	55.00	11.68		2
	60.00	11.96		
	65.00	12.12		C
	70.00	12.22		
	75.00	12.30		
	80.00	12.36		
	85.00	12.41		r T
	90.00	12.46		I
	95.00	12.49		0
1	00.00	12.52		

Figure 9.6

Titration curve for 50.0 mL of 0.100 M acetic acid ($pK_a = 4.76$) with 0.100 M NaOH.

pH during titration of weak base by strong acid

> Before titration $NH_4OH \leftrightarrow NH_4^+ + OH^-$

 $K_{b} = \frac{[NH_{4}^{+}] \times [OH^{-}]}{[NH_{4}OH]} = \frac{[OH^{-}] \times [OH^{-}]}{C_{0} - [OH^{-}]} = 1.76 \times 10^{-5}$ For most weak bases: $[OH^{-}] = \sqrt{K_{b}C_{0}}$

> if $C_0 = 0.1M$, $[OH^-] = 1.32 \times 10^{-3}$; pOH = - log $[OH^-] = 2.88$ pH = 14 - pH = 11.12

At and after equivalence point $NH_4^+ + H_2O \leftrightarrow NH_4OH + H^+$

$$K_{a} = \frac{[NH_{4}OH] \times [H^{+}]}{[NH_{4}^{+}]} = \frac{[H^{+}] \times [H^{+}]}{\frac{C_{0} \times V_{A}}{V_{A} + V_{B}}} - [H^{+}]$$
$$K_{a} = \frac{[NH_{4}OH][H^{+}]}{[NH_{4}^{+}]} = \frac{[NH_{4}OH][H^{+}][OH^{-}]}{[NH_{4}^{+}][OH^{-}]} = \frac{K_{w}}{K_{b}} = \frac{10^{-14}}{1.76 \times 10^{-5}} = 5.68 \times 10^{-10}$$

For most weak acids: $[H^+] = \sqrt{K_a C_0}$

After equivalence point, pH will correspond to the concentration of excess HCI.

$$[H^+] = \frac{C_A \times V_A - C_B \times V_B}{V_A + V_B}$$

Table 9.4Properties of Selected Indicators, Mixed Indicators,
and Screened Indicators for Acid-Base Titrations

Indicator	Acid Color	Base Color	pH Range	р <i>К</i> а	
cresol red	red	yellow	0.2-1.8		
thymol blue	red	yellow	1.2-2.8	1.7	
bromophenol blue	yellow	blue	3.0-4.6	4.1	
methyl orange	red	orange	3.1-4.4	3.7	
Congo red	blue	red	3.0-5.0		
bromocresol green	yellow	blue	3.8-5.4	4.7	
methyl red	red	yellow	4.2-6.3	5.0	
bromocresol purple	yellow	purple	5.2-6.8	6.1	
litmus	red	blue	5.0-8.0		
bromothymol blue	yellow	blue	6.0-7.6	7.1	
phenol red	yellow	red	6.8-8.4	7.8	
cresol red	yellow	red	7.2-8.8	8.2	
thymol blue	yellow	blue	8.0-9.6	8.9	
phenolphthalein	colorless	red	8.3-10.0	9.6	
alizarin yellow R	yellow	orange/red	10.1-12.0		
Mixed Indicator		Acid Color	Base Color	pH Range	
bromocresol green and methyl orange		orange	blue-green	3.5-4.3	
bromocresol green and chlorophenol red		yellow-green	blue-violet	5.4-6.2	
bromothymol blue and phenol red		yellow	violet	7.2-7.6	
Screened Indicator		Acid Color	Base Color	pH Range	
dimethyl yellow and methylene blue		blue-violet	green	3.2-3.4	
methyl red and methylene blue		red-violet	green	5.2-5.6	
neutral red and methylene blue		violet-blue	green	6.8-7.3	

CHEMISTRY TECHNIQUES: TITRATION

Used to determine the concentration of a particular solution, by measuring how much of a solution of known concentration reacts with a known volume of it.

