## Titrimetric analysis.

 Acid-base titration
## Titrimetry

A method based on determination of the volume of reagent reacting stoichiometrically with the analyte

First appeared in XVIII century and did not receive wide acceptance

## $A+B \rightarrow C$

A - determined compound;
B-added reactant, totally consumed during reaction;
$B$ is added till the moment when it stops reacting with $A$.

## Method principle

Measures volume of a titrant at the equivalence point

Titrant is added until all analyte isreacted


## Before titration



## Before equivalence point



## Titrant

## At equivalence point



## After equivalence point



## Back-titration

$$
\mathrm{A}+\mathrm{B} \text { (excess) } \rightarrow \mathrm{C}+\mathrm{B} \text { (unreacted) }
$$

After reaction ends, concentration of unreacted " $B$ " is determined by titrimetry (or any other method)

## Equivalence point

The most important part of titration - to determine equivalence point

## Moles of titrant $=\mathrm{V}_{\mathrm{eq}} \times \mathrm{C}_{\mathrm{T}}$

where $\mathrm{V}_{\text {eq }}$-volume of titrant at equivalence point, $\mathrm{L}($ or mL$)$;
$\mathrm{C}_{\mathrm{T}}$-concentration of the titrant, $\mathrm{mol} / \mathrm{L}$ (or $\mathrm{mol} / \mathrm{mL}$ )

Equivalence point is determined using:

- indicators (change color at the equivalence point);
- pH measurement;
- electrochemical potential measurement.


## Calculation of analyte concentration

$$
\begin{gathered}
x A+y B \rightarrow z C \\
c_{A} \times V_{A}=\frac{C_{B} \times V_{B} \times x}{Y}
\end{gathered}
$$

where:
$\mathrm{C}_{\mathrm{A}}$-concentration of analyte in sample (unknown, determined);
$\mathrm{V}_{\mathrm{A}}$-volume of sample (taken by analyst, known);
$\mathrm{C}_{\mathrm{B}}$-concentration of titrant (prepared by analyst, known);
$\mathrm{V}_{\mathrm{B}}$-volume of titrant atthe equivalence point (determined);
Xand Y -stoichiometric coefficients

## Analytical signal

$$
S=k \cdot C
$$

Volume of titrant $\left(\mathrm{V}_{\mathrm{t}}\right)$ is the analytical signal

$$
\begin{gathered}
\boldsymbol{V}_{\boldsymbol{t}}=\frac{\boldsymbol{C}_{\boldsymbol{A}} \times V_{A} \times Y}{\boldsymbol{G}_{\mathrm{t}} \times X} \\
k=\frac{V_{A} \times Y}{G_{\star} \times X}
\end{gathered}
$$

## Exercise

10 mL of NaOH solution in water with unknown concentration was titrated with aqueous solution of $\mathrm{HCl}(\mathrm{C}=0.200 \mathrm{~mol} / \mathrm{L})$. Equivalence point was established at the volume of titrant 7.80 mL . What is the concentration of NaOH in the analyzed sample?

$$
\begin{aligned}
& \mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O} \\
& C_{\mathrm{NaOH}}=\frac{C_{t} \times V_{t} \times X}{V_{\text {NaOH }} \times Y}=\frac{0.200 \frac{\mathrm{ma}}{\mathrm{~L}} \times 7.8 \mathrm{~mL}}{10 \mathrm{~mL}}=0.156 \mathrm{molL}
\end{aligned}
$$

Answer: concentration of NaOH in the analyzed solution is $0.156 \mathrm{~mol} / \mathrm{L}$

## Quick task

15 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution in water with unknown concentration was titrated with aqueous solution of $\mathrm{NaOH}(\mathrm{C}=0.200 \mathrm{~mol} / \mathrm{L})$.
Equivalence point was established at the volume of titrant 12.20 mL . What is the concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the analyzed sample?

## Titrant volume measurement: burette



| Table 9.1 | Specifications for Volumetric <br> Burets |  |  |
| :---: | :---: | :---: | :---: |
| Volume <br> $(\mathrm{mL})$ | Class $^{\text {a }}$ | Subdivision <br> $(\mathrm{mL})$ | Tolerance <br> $(\mathrm{mL})$ |
| 5 | A | 0.01 | $\pm 0.01$ |
|  | B | 0.01 | $\pm 0.02$ |
| 10 | A | 0.02 | $\pm 0.02$ |
|  | B | 0.02 | $\pm 0.04$ |
| 25 | A | 0.1 | $\pm 0.03$ |
|  | B | 0.1 | $\pm 0.06$ |
| 50 | A | 0.1 | $\pm 0.05$ |
|  | B | 0.1 | $\pm 0.10$ |
| 100 | A | 0.2 | $\pm 0.10$ |
|  | B | 0.2 | $\pm 0.20$ |

${ }^{\text {a }}$ Specifications for class A and class B glassware are taken from American Society for Testing Materials (ASTM) E288, E542, and E694 standards.

## Titration curve



## Reactions in titrimetry

Acid-base

Redox

Complexation

Precipitation

## Acids-Base Titrimetry

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

Acid istitrated by base
or
Base is titrated by acid

During acid-base titration, pHslowly changes; At equivalence point pH rapidlychanges.

## Acid-base titration curve



## pH during titration of strong acid

## $\mathrm{H}^{+}+\mathrm{OH}^{-} \leftrightarrow \mathrm{H}_{2} \mathrm{O}$

Before equivalence point:

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log [\text { unreacted } \mathrm{HCl}]
$$

After equivalence point: $\mathrm{pH}=14+\log \left[\mathrm{OH}^{-}\right]=14+\log$ [excess NaOH$]$

$$
\begin{gathered}
\text { At equivalence point: } \\
{\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=10^{-14} ;\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7}} \\
\mathrm{pH}=7
\end{gathered}
$$

## Table 9.2 Data for Titration of 50.00 mL of 0.100 M HCl with 0.0500 M NaOH

| Volume (mL) of Titrant | pH |
| :---: | :---: |
| 0.00 | 1.00 |
| 5.00 | 1.14 |
| 10.00 | 1.30 |
| 15.00 | 1.51 |
| 20.00 | 1.85 |
| 22.00 | 2.08 |
| 24.00 | 2.57 |
| 25.00 | 7.00 |
| 26.00 | 11.42 |
| 28.00 | 11.89 |
| 30.00 | 12.50 |
| 35.00 | 12.37 |
| 40.00 | 12.52 |
| 45.00 | 12.62 |
| 50.00 | 12.70 |

# pH during titration of weakacid by strong base 

Before titration

## $\mathrm{HAc} \leftrightarrow \mathrm{H}^{+}+\mathrm{Ac}^{-}$

$$
\begin{aligned}
& K_{A}= \frac{\left[\mathrm{H}^{+}\right] \times\left[\mathrm{Ac}^{-}\right]}{[H A c]}=\frac{\left[\mathrm{H}^{+}\right] \times\left[\mathrm{H}^{+}\right]}{C_{0}-\left[\mathrm{H}^{+}\right]}=1.75 \times 10^{-5} \\
& \text { For most weok aik } \quad\left[\mathrm{H}^{+}\right]=\sqrt{K_{a} C_{0}}
\end{aligned}
$$

$$
\begin{gathered}
\text { if } \mathrm{C}_{0}=0.1 \mathrm{M},\left[\mathrm{H}^{+}\right]=1.32 \times 10^{-3} ; \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=2.88
\end{gathered}
$$

## Before an equivalence point

## $\mathrm{HAC}+\underset{\text { immediately }}{\mathrm{OH}} \rightarrow \mathrm{Ac}_{\text {immediately }}^{-}+\mathrm{H}_{2} \mathrm{O}$ reacted formed

$$
\begin{gathered}
K_{a}=\frac{\left[H^{+}\right]\left[A c^{-}\right]}{[H A c]} \rightarrow \quad\left[H^{+}\right]=\frac{\left.K_{a} \Psi A c\right]}{\left[A c^{-}\right]} \\
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{Ac}^{-}\right]}{[\mathrm{HAc}]}
\end{gathered}
$$

$$
\begin{gathered}
{[H A c]=\frac{\text { moles of unreacted } H A c}{\text { total volume }}=\frac{C_{A} \times V_{A}-C_{B} \times V_{b}}{V_{A}+V_{B}}} \\
{\left[{\left.A c^{-}\right]=\frac{\text { moles of } \mathrm{NaOH} \text { added }}{\text { total volume }}=\frac{C_{B} \times V_{b}}{V_{A}+V_{B}}}_{\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { moles of } \mathrm{NaOH} \text { added }}{\text { moles of unreacted } \mathrm{HAC}}}\right.}
\end{gathered}
$$

## At and after equivalence point

$\mathrm{Ac}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HAc}+\mathrm{OH}^{-}$

$$
K_{b}=\frac{[H A c] \times\left[\mathrm{OH}^{-}\right]}{\left[A c^{-}\right]}=\frac{\left[O H^{-}\right] \times\left[\mathrm{OH}^{-}\right]}{\frac{C_{0} \times V_{A}}{V_{A}+V_{B}}-\left[O H^{-}\right]}
$$

$K_{b}=\frac{[\mathrm{HAc}] \times\left[\mathrm{OH}^{-}\right]}{\left[A c^{-}\right]}=\frac{[\mathrm{HAc}]\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[A c^{-}\right]\left[H^{+}\right]}=\frac{K_{w}}{K_{a}}=\frac{10^{-14}}{1.75 \times 10^{-5}}=5.71 \times 10^{-10}$
For most weak bases: $\left[\mathrm{OH}^{-}\right]=\sqrt{K_{b} C_{0}}$

After an equivalence point, pH will correspond to the concentration of excess NaOH .

$$
\left[\mathrm{OH}^{-}\right]=\frac{C_{A} \times V_{A}-C_{B} \times V_{B}}{V_{A}+V_{B}}
$$

Table 9.3 Data for Titration of 50.0 mL of 0.100 M Acetic Acid with 0.100 M NaOH
$\underset{(\mathrm{mL})}{\text { Volume of } \mathrm{NaOH}}$

| $(\mathrm{mL})$ | pH |
| ---: | ---: |
| 0.00 | 2.88 |
| 5.00 | 3.81 |
| 10.00 | 4.16 |
| 15.00 | 4.39 |
| 20.00 | 4.58 |
| 25.00 | 4.76 |
| 30.00 | 4.94 |
| 35.00 | 5.13 |
| 40.00 | 5.36 |
| 45.00 | 5.71 |
| 48.00 | 6.14 |
| 50.00 | 8.73 |
| 52.00 | 11.29 |
| 55.00 | 11.68 |
| 60.00 | 11.96 |
| 65.00 | 12.12 |
| 70.00 | 12.22 |
| 75.00 | 12.30 |
| 80.00 | 12.36 |
| 85.00 | 12.41 |
| 90.00 | 12.46 |
| 95.00 | 12.49 |
| 100.00 | 12.52 |

Figure 9.6
Titration curve for 50.0 mL of 0.100 M acetic acid ( $\mathrm{p} K_{\mathrm{a}}=4.76$ ) with 0.100 M NaOH .

# pH during titration of weak base by strong acid 

Before titration

## $\mathrm{NH}_{4} \mathrm{OH} \leftrightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}$

$$
K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right] \times\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{4} \mathrm{OH}\right]}=\frac{\left[\mathrm{OH}^{-}\right] \times\left[\mathrm{OH}^{-}\right]}{C_{0}-\left[\mathrm{OH}^{-}\right]}=1.76 \times 10^{-5}
$$

For most weak bases: $\left[\mathrm{OH}^{-}\right]=\sqrt{K_{b} C_{0}}$

$$
\text { if } \begin{gathered}
\mathrm{C}_{0}=0.1 \mathrm{M},\left[\mathrm{OH}^{-}\right]=1.32 \times 10^{-3} ; \\
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=2.88 \\
\mathrm{pH}=14-\mathrm{pH}=11.12
\end{gathered}
$$

## Before an equivalence point <br> $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$ immediately immediately reacted formed <br> $$
K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{4} \mathrm{OH}\right]} \quad \rightarrow \quad\left[\mathrm{OH}^{-}\right]=\frac{K_{b}\left[\mathrm{NH}_{4} \mathrm{OH}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}
$$

$$
\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{4} \mathrm{OH}\right]} \quad \rightarrow \quad \mathrm{pH}=14-\mathrm{pK}_{\mathrm{b}}+\log \frac{\left[\mathrm{NH}_{4} \mathrm{OH}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}
$$

$$
\left[\mathrm{NH}_{4} \mathrm{OH}\right]=\frac{\text { moles of unreacted } \mathrm{NH}_{4} \mathrm{OH}}{\text { total volume }}=\frac{C_{A} \times V_{A}-C_{B} \times V_{B}}{V_{A}+V_{B}}
$$

$$
\left[\mathrm{NH}_{4}^{+}\right]=\frac{\text { moles of } \mathrm{HCl} \text { added }}{\text { total volume }}=\frac{C_{B} \times V_{B}}{V_{A}+V_{B}}
$$

$$
\mathrm{pH}=14-\mathrm{pK}_{\mathrm{b}}+\log \frac{\text { moles of unreacted } \mathrm{NH}_{4} \mathrm{OH}}{\text { moles of } \mathrm{HCl} \text { added }}
$$

## At and after equivalence point

## $\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+}$

$$
K_{a}=\frac{\left[\mathrm{NH}_{4} \mathrm{OH}\right] \times\left[\mathrm{H}^{+}\right]}{\left[N H_{4}^{+}\right]}=\frac{\left[H^{+}\right] \times\left[H^{+}\right]}{\frac{C_{0} \times V_{A}}{V_{A}+V_{B}}-\left[H^{+}\right]}
$$

$$
K_{a}=\frac{\left[\mathrm{NH}_{4} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=\frac{\left[\mathrm{NH}_{4} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}=\frac{K_{w}}{K_{b}}=\frac{10^{-14}}{1.76 \times 10^{-5}}=5.68 \times 10^{-10}
$$

For most weak acids: $\left[H^{+}\right]=\sqrt{K_{a} C_{0}}$
After equivalence point, pH will correspond to the concentration of excess HCl .

$$
\left[H^{+}\right]=\frac{C_{A} \times V_{A}-C_{B} \times V_{B}}{V_{A}+V_{B}}
$$

| Table 9.4 | ies of Sele eened Ind | d Indicato ors for Ac | Mixed Indic Base Titrati | ators, ns |
| :---: | :---: | :---: | :---: | :---: |
| Indicator | Acid Color | Base Color | pH Range | $\mathrm{p} K_{\mathrm{a}}$ |
| cresol red | red | yellow | 0.2-1.8 | - |
| thymol blue | red | yellow | 1.2-2.8 | 1.7 |
| bromophenol blue | yellow | blue | 3.0-4.6 | 4.1 |
| methyl orange | red | orange | 3.1-4.4 | 3.7 |
| Congo red | blue | red | 3.0-5.0 | - |
| bromocresol green | yellow | blue | 3.8-5.4 | 4.7 |
| methyl red | red | yellow | 4.2-6.3 | 5.0 |
| bromocresol purple | yellow | purple | 5.2-6.8 | 6.1 |
| litmus | red | blue | 5.0-8.0 | - |
| bromothymol blue | yellow | blue | 6.0-7.6 | 7.1 |
| phenol red | yellow | red | 6.8-8.4 | 7.8 |
| cresol red | yellow | red | 7.2-8.8 | 8.2 |
| thymol blue | yellow | blue | 8.0-9.6 | 8.9 |
| phenolphthalein | colorless | red | 8.3-10.0 | 9.6 |
| alizarin yellow $R$ | yellow | orange/red | 10.1-12.0 | - |
| Mixed Indicator |  | Acid Color | Base Color | pH Range |
| bromocresol green and methyl orange bromocresol green and chlorophenol red bromothymol blue and phenol red |  | orange | blue-green | 3.5-4.3 |
|  |  | yellow-green | blue-violet | 5.4-6.2 |
|  |  | yellow | violet | 7.2-7.6 |
| Screened Indicator |  | Acid Color | Base Color | pH Range |
| dimethyl yellow and methylene blue methyl red and methylene blue neutral red and methylene blue |  | blue-violet | green | 3.2-3.4 |
|  |  | red-violet | green | 5.2-5.6 |
|  |  | violet-blue | green | 6.8-7.3 |

## Autotitrator



Titrimetry

## CHEMISTRY TECHNIQUES: TITRATION

Used to determine the concentration of a particular solution, by measuring how much of a solution of known concentration reacts with a known volume of it.

EQUIPMENT


USING INDICATORS


In acid-base titrations, a range of indicators can be used. These are solutions which change colour at a specific pH , and can be used to precisely identify when the neutralisation reaction is used to precisely identify when the end point). Different indicators are suitable for different acid-base combinations.

USING A PIPETTE
 TOEE USED


GIL ISNGPPRETEFILER Silevel withire

slowiy malin Louditio FLASK TUCH TPPTOWAL inngimes hayarignen:

Pipettes should never be filled direct from stock bottles of solution as this could contaminate them. Instead, fill of solution as this could contaminate them. Instead, fill them from some of the solution poured into a beaker. remaining in the tip after the correct volume has been delivered, so this remainder shouldn't be forced out.

CARRYING OUT THE TITRATION


| RIIB | TIIRE 1 | ITRE2 | IThe 3 |
| :---: | :---: | :---: | :---: |
| $20.30 \mathrm{~cm}^{3}$ | $20.15 \mathrm{~cm}^{3}$ | $20.00 \mathrm{~cm}^{2}$ | $20.10 \mathrm{~cm}^{3}$ |

- $=$ concordant titre values, used to calculate average Average titre $=\left(20.15 \mathrm{~cm}^{2}+20.10 \mathrm{~cm}^{2}\right)+2=20.13 \mathrm{~cm}^{\prime}$

To carry out the titration, the tap of the burette is opened to allow the solution inside to flow into a known volume of the solution in the conical flask. The amount of solution from the burette required
to reach the end point is recorded. A rough titration is usually
followed by more accurate runs. Multiple titrations are carried out until concordant titres are obtained (within $0.10 \mathrm{~cm}^{3}$ of each other).


CARRYING OUT CALCULATIONS


1 Calculate number of moles of solution added from the burette.Determine the number of moles of solution in the conical flask using the equation for the reaction and reacting ratios.

2 Calculate the concentration of the solution in the conical flask by rearranging the equation ( $c=n \div v$ ).

